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Annotation 

Scheduling problems can be alternately approached by methods based on discrete 
mathematical tools. One obtains a model of a given production technology by representing the 
relations of the phases of production as partial ordered sets. To solve the scheduling problem in 
such a case one basically needs a linear order. As an important result of the theory of partial 
orders we can cite the Szpilrajn theorem, stating that each partial order can be extended to a 
linear order. Studying the order congruences of partially ordered sets it became clear that the 
minimal linear order congruences can be successfully applied in investigating scheduling 
problems. An algorithm for finding minimal linear order congruences is introduced, and a 
partition of jobs obtained which carries important information about the solution of the parallel 
scheduling problem.  

Keywords: poset, topological sorting, order congruence, parallel scheduling. 
 
1. Introduction 
Planning and scheduling are forms of decision-making that play an important role in most 

manufacturing and service industries (Pinedo, 2005). Partially ordered sets occur widely in 
computation, in sorting and even in scheduling. For some years research on these themes has 
focused first on combinatorial optimization. Because of its special place in the landscape of the 
mathematical sciences order is especially sensitive to new trends and developments. The most 
important applications of partial orders come from theoretical computer science. Partial orders 
and linear orders also often occur in optimization problems. Scheduling, sorting and searching 
problems are among the most common instances of order. Typically, an order must be 
transformed to another, say a partial extension or a linear extension, which itself may represent 
a schedule or a sort. In a scheduling problem we have to find an optimal schedule of jobs. 
Depending on the number of the available machines and the given objective function, different 
approaches could be applied to find the optimal scheduling. In this paper we present the basic 
relationship between the notions originating from the theory of partial orders and scheduling 
problems with precedence constraints.   

 
2. Preliminary definitions and results 

We consider a partially ordered set or poset P = , where   is a set and  is a 

reflexive, antisymmetric and transitive binary relation on . We call  the ground set and  a 

partial order on . Elements of the set  are also called points, and the poset is finite if the set  

is finite. Let P =  be a poset and take  with . We say that  and  are 

comparable if either  in or . On the other hand,  and  are called incomparable, if 

neither  nor . If any two points of  are comparable in the poset P = , we call 

a linear or total order on . 

A chain in the poset P = ,  is a subset  such that any two elements in  are 

comparable. The cardinality of a chain is called the length of the chain. A chain is said to be 
maximal if it is not a real subset of any other chain. If a poset has no infinite chains, then the 
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length of the maximal chain is called the height of the poset. An antichain in the poset P 

= ,  is a subset  such that any two elements in  are incomparable.  

We say that  covers , if  and there is no  such that . We shall use 

the notation  if  and .  A point  is called a minimal point if there is no 

point  with the property  in P. Similarly, a point  is called a maximal point if 

there is no point  with  in P. It is easy to see, that a maximal chain must be contain 

one of the maximal points and one of the minimal points as well. 

If  P =  and Q =  are partially ordered sets, the function  is called isotone or 

order-preserving if  implies  for all . For a detailed study of the 

theory of partially ordered sets we refer Davey and Priestley (2002) and Trotter (2002). 

Theorem 2.1. (Szpilrajn) Any partial order has a linear extension (Szpilrajn, 1930). 

This theorem says that any partial order can be extended in such a way that every two 
points becomes comparable, and it saves the original ordering relations. The linear extensions 
of a partially ordered set are often referred as the topological sorts of the poset. The two 
common topological sorting algorithms are Kahn’s algorithm and a modified depth-first search, 
for other methods see Tella et al. (2014). 

A finite partially ordered set   can be represented by its Hasse diagram in the form 

of drawing of its transitive reduction. It means that  each element of   is represented as 

a vertex in the plane and a line segment or a curve is drawn that goes upward from  to  

whenever  covers  . So only the direct dependencies are presented, we omit the loops due to 

the reflexivity and the edges due to the transitivity.  
 
Example 2.2. The Hasse diagram of a partially ordered set with 16 points. 

 
The presented partially ordered set has 3 minimal and 1 maximal element. The height of 

the poset is 8, because the common cardinality of its maximal chains is 8.  
Two of the linear extensions of the poset are: 

 
and 

 
 

3. Scheduling problems with precedence constraints 

https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Covering_relation
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Scheduling problems can be precisely described in terms of machines, constraints and 
objective functions. These problems are generally represented by a 3-field notation introduced 
in Graham et al. (1979). The first field of the triplet  is about the machines, where 1 

denotes the single and denotes the parallel identical machines environment. In case of  

the number of machines  is considered as a constant. In the -field the constraints regarding 

the jobs are given, for example the precedence and preemption relations, the completion and 

processing times, deadlines etc. The -field describes the different types of the objective 

functions which may be the largest or the total completion time, the maximum lateness, the 
number of tardy jobs and so on. In this paper we mainly focus on the problem 

 where we have jobs with unit processing times with precedence constraints, 

the jobs are to be scheduled on parallel identical machines such that the makespan (the total 
completion time) is minimized. 

Suppose that  is a finite set of jobs or tasks. Let , 

denote the fact that job  precedes job  in time. Obviously, the pair  

is a partially ordered set and the direct precedencies of the jobs can be represented by a Hasse 
diagram. Consider again the poset given in Example 2.2, and suppose that its points 

correspond to jobs, and its relations define precedencies between the jobs. If job  precedes 

job   in time, then the node representing job is located below the node 

representing job . 

First consider the single machine scheduling problem . In this problem 

only one machine processes all the jobs, which should be scheduled regarding the precedence 

constraints. Since we have unit processing times, the minimal makespan’s length equals , and 

any linear extension of the partial order  (including   and ) provides an optimal scheduling 

 
4. Order congruences of partially ordered sets 

Before dealing with the parallel scheduling problems, we need an insight in the theory of 
order congruences. We have seen in the previous chapter, that the single machine scheduling 
problem can be solved by generating a linear extension of the partial order representing the 
problem. If more machines can work parallelly at the same time, we can solve the problem by 

dividing the set  of the jobs into disjoint subsets  where any set  contains only 

incomparable jobs which can be assigned to the parallelly working machines. 
 

Let  be a partially ordered set. A partition  of  is a covering of  

by nonempty and pairwise disjoint subsets of , that is  and  

if  The subsets are called the blocks of the partition . Since 

 is a partition of M, we can find an equivalence relation ρ on  such that 

.    

Therefore, the partition is a factor set of  with respect to ρ. Let 

,   

denote the natural map, then  
, if  .    

 

Definition 4.1. Let  be a poset and be an equivalence relation on it. ρ is 

called an order congruence of  if there exists an induced partial order on the factor set 

 such that the function  is order-preserving, that is  implies 

 for any . 

The easiest way to give an order congruence of the poset  is to cut into 

subintervals some of its linear extensions. More precisely, if   is a linear 

extension of  on , then form subsets of  in the following way: 

                    .                             (1) 

The obtained partition  is the factor set of an order congruence of . 

Denote by  the set of all order congruences of a poset . Clearly,  with the 

set-theoretical inclusion is a partially ordered set. To solve a parallel scheduling problem, we 
are interested in finding blocks where the induced partial order on the blocks is a linear order. 
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Definition 4.2. An order congruence  is called a linear order congruence if the 

factor poset  is a chain. 

Suppose that we have an order congruence obtained by (1). It is a linear order 

congruence if any consecutive intervals   have elements  and 

 such that . 

Obviously, the linear order congruence which is the solution of a parallel scheduling 
problem must be minimal in the following sense. 
 

Definition 4.3. An order congruence  is called a minimal linear order 

congruence of  if there is no , such that  is a linear order congruence and 

  

If the intervals in (1) are antichains and for any two consecutive intervals  

 there are elements  and  such that  covers  then we get 

a minimal linear order congruence (Körtesi et al. 2005). 
 

Algorithm 4.4. The following method gives a partition which corresponds to a minimal 
linear order congruence in a partially ordered set. 

Let  be a poset and  be the set of all minimal points in Delete all the points of 

from the set  and cancel all relations in which there is a point belonging to . Then the 

process is continued for the set  let the set  consist of the minimal points of , 

delete the points of from the set and cancel all relations in which there is a point 

belonging to . In general, the minimal points of   are collected in , 

where  denotes the height of the poset. To prove that the number of the sets 

obtained by the process equals exactly consider the fact that each set  must be an 

antichain, because it contains incomparable points. For this reason, any two elements of the 
maximal chain cannot be in the same set , so we need  different antichain to cover the poset 

.   

Consider the partially ordered set given in Example 2.2. Using Algorithm 4.4. we obtain 
the following partition of the set : 

 
 

The obtained sets are antichains, and in any two neighbor blocks one can find covering 
points, so this is the factor set of a minimal linear order congruence.   
 

5. Parallel scheduling problems 

In case of parallel machines scheduling problems, the aim is to assign the jobs to the 
machines where the number of machines can be a fixed number, or we can assume that 
arbitrary number of machines are available. Each job must be processed in one machine and 
each machine can only process one job at the same time. In general, if the processing times 
vary or we have more than two machines then to find an optimal scheduling is an NP-hard 
problem. If all of the jobs take unit time, and the number of machines is two, (that is, the 

problem is defined as , then a polynomial time algorithm exists to find the 

optimal solution. This method is the Coffman-Graham algorithm (Coffman and Graham, 1972), 
which can be executed in the following steps: 

1. Make the transitive reduction of the precedence-graph, that is, remove all indirect 
dependencies (in case of the Hasse diagrams this step is completed, because the diagram 
contains only direct precedencies). 

2. Label and sort the jobs by a lexicographical order which yields a special linear 
extension of the original partial order. 

3. Apply Graham’s list scheduling: whenever a machine has no work to do, assign to it 
he first unscheduled job from the list created in Step 2. The machine with the lower index is 
prior. 

In Example 2.2, the jobs (the vertices of the graph) are labelled due to Step 2 of the 
algorithm, and after applying Step 3, we obtain the following optimal scheduling for two 
machines: 

Machine 1          

Machine 2             _      _ 
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In a general  problem, where , the Coffman-Graham algorithm 

usually does not find the optimal scheduling, but especially in small problems often provide a 

quasi-optimal solution. In our example the situation is even better in the case of The 

Coffman-Graham algorithm gives the following solution to the problem  :  

Machine 1         

Machine 2       _     _          _ 

Machine 3       _     _       _        _      _ 

 
This solution is optimal for our objective function, because we got a partition of 8 blocks, 

which means that the total completion time is 8 units which equals the length of the maximal 
chain in the set . The chain with the maximal length is often referred as the critical path in 

scheduling theory because the jobs cannot be completed in steps less than the maximum chain 
length. The length of the critical path equals the number of the blocks in a minimal linear order 
congruence. Beside this, the partition corresponding to the minimal linear order congruence 
determines the maximum number of the machines worth setting to process all the jobs. In 
Example 2.2. the largest block of the minimal linear order congruence was  having 4 

elements. It means that there is no use to apply more than 4 machines, because there are only 
4 jobs which can be completed at the same time. As a matter of fact, the blocks corresponding 
to the minimal linear order congruence also provide an optimal solution of the problem 

because the makespan is minimal. On the other hand, this solution 

probably is not optimal with another objective function (for example total idling time). 
 

6. Conclusion 
In this paper some order theoretical notions and results were applied in solving special 

scheduling problems. If there are precedence relations between the jobs in a scheduling 
problem, then the set of the jobs can be considered as a partially ordered set where the order is 
defined by the precedencies.  The single machine scheduling problem can be solved applying 
Szpilrajn’s theorem directly, by giving any linear extension of the partial order determined by the 
precedencies. In case of parallel scheduling problems minimal linear order congruences can 
provide useful information in the solution process. A simple algorithm was presented to 
determine the partition corresponding to the minimal linear order congruence. The number of 
blocks in this partition is equal to the length of the critical path to the scheduling problem, and 
the number of items in the largest block indicates how many tasks can be completed at one 
time. Our results show that the theory of partially ordered sets is a promising approach to 
interpreting, modelling, and solving scheduling problems. 
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