

P
R

O
F

E
S

S
IO

N
A

L
 S

T
U

D
IE

S
:

T
h

e
o

ry
 a

n
d

 P
ra

c
ti

c
e

2

0
2

3
 /

 1
2

 (
2

7
)

 65

OPENPLC HARDWARE SPEED PERFORMANCE
COMPARISON

Saulius Niauronis
Šiaulių valstybinė kolegija
Lithuania

Annotation
Programmable Logic Controllers (PLCs) are critical components in industrial automation.

As the technology behind PLCs continues to evolve, there is an ever-growing range of PLC
hardware available in the market and their performance and functionality can vary significantly.
Choosing the right PLC for a given application is thus a challenging task, requiring a thorough
understanding of the available options and their capabilities. This approach involves running
benchmarking tests on different PLCs to measure their performance and compare them. In this
article, we compare the edge boundaries of time-based parameters of different PLC hardware,
including open-source embedded controllers (Arduino and ESP8266) working with software
such as OpenPLC and also Wago programmable logic controller PFC200.

Key words: OpenPLC, Programmable Logic Controller, PLC Benchmark, Speed Test.

1. Introduction
Programmable Logic Controllers (PLCs) have been used for decades to automate

industrial processes, control machinery, and monitor system performance. The technology
behind PLCs has evolved significantly over the years, resulting in a wide range of hardware
options available in the market. These options include both commercial offerings and open-
source solutions such as openPLC. However, the functionality and performance of these
devices can vary significantly, making it challenging to choose the right one for a particular
application. Benchmarking has emerged as an effective method for evaluating the performance
and functionality of PLC hardware [1]. This approach involves designing and running simple test
programs on different PLCs to measure their performance and compare them. Usually
benchmarking studies focused on comparing the performance of PLCs from different vendors
[2]. The studies evaluates the processing speed, memory usage, and I/O capabilities of the
PLCs and find significant differences between the devices.

Benchmarking PLC hardware involves creating a set of tests that simulate real-world
conditions and measure the performance of different PLCs under these conditions [3]. These
tests can evaluate various aspects of PLC performance, including processing speed, memory
usage, and input/output (I/O) capabilities. The benchmarking process can help identify the
strengths and weaknesses of different PLCs, making it easier to choose the right one for a
given application. To achieve accurate performance evaluation of PLCs and other control
devices, benchmarking studies usually are conducted to compare different devices [4]. However
this requires standardized tests which in an area of electrical engineering products, are not
always possible to run because of non-standardized platforms where applications are not meant
to be cross-platform compatible [5].

Benchmarking also has been used for evaluating the performance of embedded systems,
which are widely used in control applications [6]. In general, performance measurement and
benchmarking of industrial control systems have been recognized as important tasks [7].
Regarding IEC 61131-3 based programming, several open-source software platforms such as
openPLC are available that can run on various hardware platforms such as Arduino, ESP8266,
ESP32 and others [8, 9]. So usage of same standardized programming methods in a situation
of comparison of performance demonstrated by both open source software (OpenPLC and
related hardware) and commercial PLC solutions, can help determine which platform provides
the best value.

More to that, in recent years, the DIY community has become increasingly interested in
using microcontrollers like Arduino, ESP8266, and ESP32 for industrial automation applications.
These microcontrollers offer a low-cost alternative to traditional PLCs and can be programmed
using not only IEC 61131-3, but also other open-source software [10]. However, their
performance and reliability for industrial applications are still debatable. This article aims to
compare the performance of these DIY microcontrollers against commercial PLC from reputable
brands such as Wago, which is selected as one of the latest PLC market new-comers in order
not to compare old design systems, which still exist on the market because of long term support
and proven reliability.

The task of this study is to compare open source solutions providing IEC 61131-3
compatibility to commercial PLC in terms of speed. Objectives include:

P
R

O
F

E
S

S
IO

N
A

L
 S

T
U

D
IE

S
:

T
h

e
o

ry
 a

n
d

 P
ra

c
ti

c
e

2

0
2

3
 /

 1
2

 (
2

7
)

8 66

1. To prepare a set of benchmarking applications;
2. To evaluate I/O speed and cycle durations of several hardware options;
3. To compare open source solutions to each other and to commercial solution.

2. Methodology
To compare the performance of different PLC hardware, a range of devices that

represented both commercial and open-source solutions were selected. For commercial PLCs,
a device from Wago PFC200 family was selected (750-8214 with 8DO module 750-1515). For
open-source solutions, hardware controllers, which are commonly used in DIY industrial
automation projects, were selected: Arduino UNO (ATmega328 based), Arduino MEGA2560
(ATmega2560 based) and NodeMCU ESP8266. Selected hardware features are provided in
table 1. OpenPLC with default options was used in tests. Since it does not support PFC200,
multi-platform IDE CODESYS 3.5 (which is very popular as most PLC manufacturers currently
base their newest products on CODESYS runtime) was used. All test programs were designed
in FBD programming language.

Table 1.
Hardware specifications

Controller CPU RAM ROM I/O count Comm.
interfaces

Price in 1pc
quantity

Arduino UNO R3
(ATmega328)

16 MHz 2 kB 32 kB
+ 1 kb

13 digital I/O + 6 analog + from 2.50€ + VAT

Arduino
MEGA2560

16 MHz 8 kB 256
kB +
4 kb

54 digital I/O + 16
analog

+ from 9.00€ + VAT

NodeMCU
ESP8266

80 – 160
MHz

128 kB 4 Mb 16 digial I/O + 1 analog + incl.
wireless

from 1.50€ + VAT

Wago PFC200
(750-8214 + 750-
1515)

1 GHz 512
Mb

4 Gb 8 digital outputs + from 1150.00€
+ VAT

Wago PFC200
(750-8214 +
5 modules)

1 GHz 512
Mb

4 Gb 12 DO + 12 DI +
specialized interface

+ from 1630.00€
+ VAT

Program A (fig. 1) was designed to be as simple as possible. It was used to measure real

output signal parameters, such as signal amplitude, I/O output pulse rise time, minimum
duration (I. e. maximum speed) of one program cycle.

Fig. 1. Program A – output inversion each cycle. OpenPLC (left); CODESYS 3.5 (right)

Program B (fig. 2) was designed as a mean to analyze situation when controller needs

more processing for background tasks (in this situation, time monitoring) with same I/O load.
Program B results compared to program A provides information on if the performance is limited
by I/O interface, or by CPU and memory throughput. Cycle period is measured.

Fig. 2. Program B – output inversion each cycle with additional background task. OpenPLC

(left); CODESYS 3.5 (right)

P
R

O
F

E
S

S
IO

N
A

L
 S

T
U

D
IE

S
:

T
h

e
o

ry
 a

n
d

 P
ra

c
ti

c
e

2

0
2

3
 /

 1
2

 (
2

7
)

 67

Program C (fig. 3) was designed to represent more CPU and memory consuming
process, where I/O operations are rare and used only to externally measure multi-cycle duration
(period).

Fig. 3. Programs C & D – counting each cycle (0-10000) and single cycle pulse together with
value reset to 0. OpenPLC program D (upper); CODESYS 3.5 program D (bottom). Program C

is same, but GE block input is 100 instead of 10000

Program D is same as program C, but 100x longer in cycle count until reset and repeat. It

was used in order to remove the delays concerning I/O and reset to 0 before repetition of multi-
cycle operations. This can be done by comparing C and D results with some simple
calculations.

Programs were set so, that they are repeated as fast as possible. OpenPLC has no
freewheeling option for task execution, so minimum allowed interval of 1 us was set. PFC200
controller allowed 50 us minimum cycle repetition interval and also freewheeling option, so both
were used. No any other task was set to run in background – only one of shown programs at a
time. If to compare to real-world applications, programs are basic and small, but the idea is to
investigate fastest possible performance speeds and their deterioration when CPU and memory
consumption is being increased. I. e. only maximum performance and no minimum performance
was analyzed.

Rigol DS1052E digital oscilloscope was used for timing measurements. 50 MHz
bandwidth allows to measure digital signals with ~20 ns rise times without the distortion of
significant frequency components of a signal and 1GSa/s sampling rate allows signal acquisition
with 1 ns resolution.

Each measurement was repeated 10 times in order to ensure that there is no variation
because of different conditions for measurement algorithm or a state of device being tested.

3. Benchmark results
Since I/O operation is hardware determined, no change in output pulse rise (or fall)

durations was observed while changing CPU load. Fig. 4. Shows typical output pulses
(measured using program A). Please note, that different hardware has different voltage levels
(3V, 5V, 24V), so rise times should not be compared directly. In this experimental trial, main
purpose of this data was to understand if this duration can be important while measuring cycle

P
R

O
F

E
S

S
IO

N
A

L
 S

T
U

D
IE

S
:

T
h

e
o

ry
 a

n
d

 P
ra

c
ti

c
e

2

0
2

3
 /

 1
2

 (
2

7
)

8 68

times of different platforms. As pulse rise times observed are in 15-20 ns range (which at the
same time is at a limit of measurement equipment bandwidth) and periods are in tens of micro
seconds, it can be assumed, that signal rise and fall times are not needed to account for in later
trials. Overshoot is different and is less in systems with higher output voltage.

Fig. 4. Output pulse shape, amplitude and rise duration. UNO (upper left); MEGA2560 (upper
right); ESP8266 (bottom left); Wago 750-1515 (bottom right) (mind different time unit)

PFC200 output pulse fall duration has capacitor discharge based waveform (Fig. 5), but it

is not important as signal period values will be monitored, so the rising edge is enough to set
the trigger of the oscilloscope.

Fig. 5. Wago 750-1515 output pulse trailing edge shape (left); Its insignificance while measuring
cycle period (right)

By analyzing program cycle durations of program A-D (Fig. 6), it can be seen that

program A cycle time is no close to scheduled 1 us and is 17.6 us (35.2us / 2). Program B cycle
time increases as additional CPU load is added and is 94.8 us (189.6 us / 2). It can be stated
that processing power is the limiting factor and not I/O delays. Program C cycle time can be
calculated as 6.32 ms / 100 cycles and is 63.2 us. Program D cycle time is 612 ms / 10000 =
61.2 us. It can be calculated that 99 additional (program C as compared to D) variable and
output resets take 632-612 ms, so one reset is 0.202 ms (I. e. (632-612) / 99.).

P
R

O
F

E
S

S
IO

N
A

L
 S

T
U

D
IE

S
:

T
h

e
o

ry
 a

n
d

 P
ra

c
ti

c
e

2

0
2

3
 /

 1
2

 (
2

7
)

 69

Fig. 6. UNO period measurement for programs A-D (from upper left to bottom right)

MEGA2560 and ESP8266 measurements are corresponding and they are provided in

table 2. However situation while observing results for Wago PFC200 is different. This system’s
type is distributed I/O system, meaning that in between PFC200 controller and I/O module (750-
1515 in this setup), there is a CANopen bus. Also the PLC itself is running some operating
system and runtime runs only as a service (which then execute test programs). Wago’s popular
750 system has no standalone PLC controllers, so these system type based differences are not
possible to avoid. Most of industrial PLCs from other manufacturers also adopt such type of
technology with similar topology.

All 4 programs in PFC200 PLC were run with PC connected in online monitoring state
and later also with PLC running in offline (no PC connected) mode. No differences in cycle
times were observed. However, cycle times were shorter in sessions, when system consisted of
only PFC200 controller and 750-1515 digital output module alone. Trials were also ran with 5
modules on PLC internal bus as this allowed more close scenario to Arduino or ESP8266
comparison, where there is comparable count of inputs and outputs. All this data is provided in
table 2. Program C & D durations are average.

Table 2.
Benchmark results. Single cycle durations

Controller
Set task

cycle
Program A
(inversion)

Program B
(inversion

with
additional
CPU load)

Program C
(count to

100)

Program D
(count to

10000)

Program C &
D (reset

duration)

UNO 1 us 17.6 us 94.8 us 63.2 us 61.2 us 202 us

MEGA2560 1 us 59.6 us 134.5 us 98.4 us 95.2 us 323 us

ESP8266 1 us 19.3 us 23.5 us 22.28 us 24 us -

PFC200:

 50 us 740-830 us 740-800 us 792 us 784 us 808 us

(single module on
internal CANbus)

50 us 528 us 490 us 499 us 504 us 505 us

 1 ms 1008 us 1000 us

(single module on
internal CANbus)

1 ms 1012 us 1000 us

 free-
wheeling

1860 us 1880 us 1920 us 1880 us 4040 us

(single module on
internal CANbus)

free-
wheeling

1600 us 1580 us 1600 us 1600 us -

 5 ms 5000 us

P
R

O
F

E
S

S
IO

N
A

L
 S

T
U

D
IE

S
:

T
h

e
o

ry
 a

n
d

 P
ra

c
ti

c
e

2

0
2

3
 /

 1
2

 (
2

7
)

8 70

4. Comparison and conclusions
Different hardware of controllers has different output drivers, so output pulse edge timing

and amplitude voltage varies. AVR family controllers (ATmega328 and ATmega2560) has rapid
output, with a leading edge rise time of only 15-16 ns, another embedded solution (ESP8266)
has similar value of 23 ns. But commercial PLC output (Wago 750-1515) is much (approx. 1000
times) slower as most probably it has not only additional 24V circuitry, but also some additional
features.

In case of embedded controllers, even with IEC61131-3 programming, their minimum
program cycle times are much faster (18-60 us) when compared to Wago distributed I/O system
750 (528 us). On the other hand, even minimum CPU load increases cycle time for embedded
controllers significantly (up to 5 times observed), but does not increase for commercial PLC at
all. This means, that commercial PLC performance speed is even if more slow, but more stable
and not so dependent on CPU load. The same can be seen while comparing embedded
solution with more available CPU power (ESP8266) – cycle times are almost constant (and still
20 times faster than commercial PLC).

Wago PFC200 family controller cycle time is dependent on internal CANopen bus load.
Observed latency difference was observed to be +60% (when 5 modules were in system in
comparison to 1 module). In any scenario this PLC was not able to maintain minimum task cycle
time of 50 us and was at least almost 10 times longer: 490 us. If task cycle time was set to 1 ms
or to 5 ms, it was maintained in an outstanding accuracy. Freewheeling mode was expected to
assign all resources of CPU to get as low as possible cycle times, but it appears, that in this
mode, other system processes obtained most of processing power or it was by default
optimized for low energy consumption instead of low cycle time. Freewheeling mode appeared
to be neither fast neither very stable in terms of program cycle durations. On the other hand, it
might be the right choice in order to have low cycle time and fail-free long-term operation, as
problems can theoretically occur if task execution takes longer than scheduled cycle time. In
neither trial, program instabilities were observed, but for production designs this approach of
setting lowest possible cycle time is potentially a non-stable way of achieving speed
performance as cycles are skipped, or delayed.

In overall it can be stated, that open source controllers has their own performance
benefits over full-scale PLC systems. They are not only much cheaper, but allow to achieve
even faster (up to 28 times as observed in this study) performance in small scale applications
(up to some point which is limited by CPU resources available). On the other hand, commercial
PLCs have more robust programming environments, more features and more flexibility. All this
is important as projects in industry are typically non mass production, so comfortable use and
support more important than a unit price.

References
1. Iqbal, S.; Khan, S. A.; Khan, Z. A., 2013. Benchmarking industrial PLC & PAC: An

approach to cost effective industrial automation, International Conference on Open Source
Systems and Technologies, Lahore, Pakistan, pp. 141-146, doi:
10.1109/ICOSST.2013.6720620.

2. Marasek, S.; Kulesza, Z., 2010. Universal tool for estimation of programmable logic
controllers processing power, Proceedings of the 17th International Conference Mixed Design
of Integrated Circuits and Systems - MIXDES 2010, Wroclaw, Poland, pp. 447-450.

3. Sunder, C.; Zoitl, A.; Rofner, H.; Strasser, T.; Brunnenkreef, J., 2007. Benchmarking of
IEC 61499 runtime environments, IEEE Conference on Emerging Technologies and Factory
Automation (EFTA 2007), Patras, Greece, pp. 474-481, doi: 10.1109/EFTA.2007.4416806.

4. Luyan, W.; Zhangguo, S.; Long, C., 2013. The Performance Analysis for Embedded
Systems using Statistics Methods. TELKOMNIKA Indonesian Journal of Electrical Engineering.
11. 10.11591/telkomnika.v11i7.2864.

5. Weiss, A. R., 1999. The standardization of embedded benchmarking: pitfalls and
opportunities, Proceedings 1999 IEEE International Conference on Computer Design: VLSI in
Computers and Processors (Cat. No.99CB37040), Austin, TX, USA, pp. 492-508, doi:
10.1109/ICCD.1999.808586.

6. Iqbal, S. M. Z.; Liang, Y.; Grahn, H., 2010. ParMiBench - An Open-Source Benchmark
for Embedded Multiprocessor Systems, IEEE Computer Architecture Letters, 9(2) pp. 45-48,
doi: 10.1109/L-CA.2010.14.

7. Jelali, M., 2012. Control performance management in industrial automation:
assessment, diagnosis and improvement of control loop performance.

8. Tisserant, E.; Bessard, L.; de Sousa, M., 2007. An Open Source IEC 61131-3
Integrated Development Environment, 2007 5th IEEE International Conference on Industrial
Informatics, Vienna, Austria, pp. 183-187, doi: 10.1109/INDIN.2007.4384753.

P
R

O
F

E
S

S
IO

N
A

L
 S

T
U

D
IE

S
:

T
h

e
o

ry
 a

n
d

 P
ra

c
ti

c
e

2

0
2

3
 /

 1
2

 (
2

7
)

 71

9. Alves, T.; Morris, T., 2018. OpenPLC: An IEC 61,131–3 compliant open source
industrial controller for cyber security research, Computers & Security, 78, pp. 364-379, ISSN
0167-4048, https://doi.org/10.1016/j.cose.2018.07.007.

10. Javed, M.Y.; Rizvi, S.T.H.; Saeed, M.A.; Abid, K.;Naeem, O. B.; Ahmad, A.; Shahid,
K., 2015. Low cost computer numeric controller using open source software and hardware. Sci.
Int. (Lahore), 27(5), pp.4041-4045. ISSN 1013-5316.

Received: 7 April 2023.
Accepted: 18 April 2023.

